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Abstract

In this paper, we propose a new approach to model bounded rationality
in macroeconomics. This method is based on Case-based Decision Theory
(Gilboa and Schmeidler, 1995), which been shown to match human choice
behavior in experiments (Pape and Kurtz, 2013; Guilfoos and Pape, 2014).
The idea is that case-based learning agents behave like ‘average people’ who
do not possess structural knowledge of the economy and respond primar-
ily to variables that are directly relevant to their own wellbeing. These
agents accumulate a memory bank that stores past cases that they have
encountered, and, when they are confronted with a new choice, they judge
how similar the current circumstances to cases in memory, and use that
judgement to forecast payoffs of alternative actions. We apply this learning
approach to the Cobweb model. We find that market prices converge to
the rational expectations prices if agents search for a better outcome per-
sistently. If agents are not sufficiently persistent, then multiple equilibria
abound, and the rational expectations equilibrium becomes a special case.
On the other hand, if they are too persistent, they can search forever and
never achieve convergence.
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The main reasoning technique that people use is drawing analogies

between past cases and the one at hand.

Isaac Gilboa and David Schmeidler

Case-based Decision Theory, 1995

From causes which appear similar we expect similar effects. This is the

sum of all of our experimental conclusions.

David Hume

Philosophical Essays Concerning

Human Understanding, 1748

1 Introduction

Expectations play an important role in macroeconomics. Modern macroeconomic

models build on a dynamic general equilibrium framework, in which future aggre-

gate outcomes are affected by private agents’ expectations and expectations depend

on aggregate outcomes. Much of recent development in macroeconomics aims at

resolving this “self-referential” nature of expectations. The leading paradigm is

rational expectations, initially advanced by Muth (1961), and made popular by

Lucas (1972) and Sargent (1973). The central idea is that profit-driven behavior

eliminates non-rational expectations, and in equilibrium, the subjective distribu-

tion of outcomes (expectations) should coincide with the objective distribution.

While rational expectations remains the leading paradigm in modeling expec-

tations, in recent years there has been a burgeoning literature that challenges its

premises and practicality. The common criticism is that the rational assumption

endows market participants cognitive abilities that are beyond those of their real-

life counterparts. In order to form rational expectations, agents are often assumed

to be able to observe the true distributions of all shocks, all parameters of the

economy, and the true solutions of the structural models. Not even the most so-

phisticated economists claim to possess such knowledge in real life. The alternative

is the “bounded rationality” approach, a methodology put forth by Herbert Simon

in 1957. There are various ways bounded rationality has been modeled in macroe-

conomics. The adaptive learning approach, for example, characterize agents as
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econometricians who use observed data to form forecasts of future economic ag-

gregates (Sargent (1993), Evans and Honkapohja (2001)). The genetic algorithm

approach simulates learning by applying the genetic mechanisms of reproduction,

crossover, and mutation to human agent learning (Arifovic, 1994). Another ap-

proach to learning is to use neural networks. In neural networks, the relationship

between inputs and outputs are represented with a network structure, and learning

takes place when signals are passed through different layers of the network (Cho

(1995) and Cho and Sargent (1996)).

In this paper, we propose a new approach to model bounded rationality in

macroeconomics. This method is based on Case-based Decision Theory (Gilboa

and Schmeidler, 1995). Case-based Decision Theory was developed to be be a more

realistic decision theory than expected utility by dispensing with the requirement

that agents know the entire state space of the problem. CBDT has received some

recent empirical support as a model which can explain individual choice behavior

in psychological and economic experiments and so can be thought of as providing

a model of how an ‘average person’ might respond to a generic choice situation.1

Keeping with this principle of modeling an ‘average person,’ we assume the case-

based learners in our model do not possess knowledge of the structural model nor

the distribution of fundamental shocks. Moreover, and in contrast to agents in

some of the aforementioned learning models, these agents also do not attempt

to estimate a structural model. Instead, they use a memory bank of past cases

that they have encountered. When the agent encounters a new case and a decision

needs to be made, she looks into her memory bank for cases that are similar to the

current case. By comparing the payoffs associated with past cases, agents select a

choice that delivers the best payoff in similar cases. Agents then accumulate cases

in memory as they make more choices, and it is this accumulation of memory which

drives learning. This memory bank could be, for example, a farmer’s memories of

the prices she charged for wheat in each year and the profits associated with each

pricing decision.

We apply this case-based learning approach to the Cobweb model. We choose

this model for two reasons. First, we need a very simple model in order to offer

1For recent work, see Pape and Kurtz (2013) and Guilfoos and Pape (2014). See Section 2
for more details.
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a clear and succinct description of our methodology. Two, the Cobweb model

has the basic self-referential nature that most macroeconomic models have, and

is well-suited for the study of expectation formations. It was the model that

Muth (1961) used to promote rational expectations, and was also what Evans and

Honkapohja (2001) and Arifovic (1994) used to study econometric learning and

genetic algorithms.

A key question we ask is with case-based learning, whether or not the econ-

omy can converge to an equilibrium, and if so, what type of equilibrium it would

converge to. The result can be summarized as follows: The key parameter is the

patience of the agents, which is here captured by a parameter called the annealing

rate δ. The annealing rate is analogous to the utility discount rate (see Section

2 for more details). For an intermediate level of δ, around .99, we find that the

economy converges to an equilibrium which corresponds to the rational expecta-

tions equilibrium. When agents are insufficiently patient (δ is too low) we find

that agents converge much quicker to an equilibrium, but the price level which

results may be far from the REE price. In this case, there are multiple equilibria

in the economy, and they are path or history dependent. In other words, with

the same initial conditions, the economy can coverage to a different equilibrium

simply because agents take an alternative path in their learning and decisions

processes. On the other hand, we find that when agents are too patient, that is,

when δ is too high (δ = 1), agents continue to search for an optimal quantity and

there is no convergence in prices at all. This result is reminiscent of the stabil-

ity result in other learning literatures. For example, with econometric learning, a

general finding is that the rational expectations equilibrium is learnable as long as

the demand curve has a slope less than one (Evans and Honkapohja, 2001). The

path-dependent nature of equilibria is similar to the defining characteristic of a

self-confirming equilibrium (Sargent, 2008).

Our result suggests that in the Cobweb economy, the case for a unique rational

expectations equilibrium weakens when agents are heuristic learners. Multiple

equilibria abound, and the unique equilibrium is a special case. We believe this

approach is useful for the study of other macroeconomic topics.

The rest of the paper is structured as follows. Section 2 describes the Case-

based decision theory and related literature. Section 3 sets up the Cobweb model
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and explains how cased-based learning works in this environment (Section 3.3).

Section 4 presents our main result. Section 5 concludes.

2 Learning under Case-based Decision Theory

Decision-makers are case-based learners if they make choices dynamically consis-

tent with Case-based Decision Theory (Gilboa and Schmeidler, 1995). Case-based

Decision Theory postulates that when an agent is confronted with a new problem,

she asks herself: How similar is today’s circumstance to other circumstances I have

experienced? What actions were taken in those cases? What were results? She

then forecasts payoffs of actions using her memory, and choses the action with the

highest forecasted payoff.

‘Decision theories’ are representation theorems: an agent’s choice behavior is

observed and, if the choice behavior follows certain axioms, a mathematical rep-

resentation of utility, beliefs, et cetera can be constructed. The dominant decision

theory in economics is Expected Utility Theory (von Neumann and Morgenstern,

1944; Savage, 1954). The primitives of expected utility are: a set of actions or

‘acts’ available to the agent, a set of outcomes, and a set of states of the world.

The outcome of a particular action is contingent on the state of the world, and

agents may be uncertain about the true state, and instead have a belief distribu-

tion over possible states. An example: an agent may choose to take or not take an

umbrella to work (actions); the agent might get wet or not (outcomes); and the

weather might be rainy or sunny (states of the world).

Case-based Decision Theory was developed with an appeal to a priori realism

in its structure relative to expected utility theory: that is, Gilboa and Schmei-

dler say ‘[a] theory that will provide a more faithful description of how people

think would have a better chance of predicting what they will do.’ To that end,

Gilboa and Schmeidler point out that ‘in many decision problems under uncer-

tainty, states of the world are neither naturally given, nor can they be simply

formulated.’ In the umbrella example, the states of the world are naturally and

simply defined. However, consider a more complex decision; Gilboa and Schmei-

dler suggest considering President Clinton deciding on a military intervention in

Bosnia-Herzegovina. The acts may be clear–nothing, economic sanctions, or vari-
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ous military interventions–but the the possible states are very difficult to describe

or list: factors that determine the numbers and types of casualties that would re-

sult from various strategies, relative strength of different warring factions, factors

that determine the public opinion response, the internal politics of Russia that

may effect their response. Since the states of the world are difficult to describe,

and it is an even harder task to assign probabilities to these states, it is hard

to imagine that expected utility theory “describe[s] the way people ‘really’ think

about [such] problems.”2 To find a more realistic formulation they resort to Hume

(1748), who states, “From causes which appear similar we expect similar effects.”

That is, agents make choices by drawing analogies from past cases to present cases.

Gilboa and Schmeidler propose Case-based Decision Theory (CBDT) as a deci-

sion theory which corresponds to this view. This is actualized in the structure of

CBDT by agents maintaining a ‘memory’ of past cases and, when confronted with

a new choice, judging the similarity between past cases and the current case to

form expectations of the payoff of alternative actions. In this formulation, agents

do not need to have access to the correct state space, and in fact do not think of

the problem as having a state space at all.3

The increased a priori realism of Case-Based Decision Theory has resulted in

some early empirical success in explaining human choice behavior. Most relevant to

our investigation here, Pape and Kurtz (2013) introduce a computational ‘software

agent’ which implements Case-based Decision Theory.4 They use this case-based

software agent, called CBSA, to find that imperfect memory, accumulative (not

average) utility, a similarity function consistent with research from psychology,

and a 80 − 85% target success rate renders CBSA a good fit for human data in

2A more recent example on the topic of military intervention would be Donald Rumsfeld’s
distinction between ‘known knowns,’ ‘known unknowns,’ and ‘unknown unknowns.’ ‘Unknown
unknowns,’ that is, “the things we do not know we don’t know,” could be thought of as states
of the world that an expected utility maximizer is not aware of, and therefore assigns a zero
probability to. Since no amount of Bayesian updating would move that probability away from
zero, this would suggest that, to describe decisions which may involve ‘unknown unknowns,’ one
might want a decision theory that did not require agents to have the correct list of possible states
of the world.

3Other decision theories have dispensed with the state space without resorting to the Hume
“similarity” formulation, such as Karni (2011) and Pape (2013).

4A software agent is “an encapsulated piece of software that includes data together with
behavioral methods that act on these data (Tesfatsion, 2006).” Software agents are used in
Agent-based Computational Economics (ACE), of which this paper is a part.
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the classification learning experiment from the psychology literature.5 The same

implementation, in Guilfoos and Pape (2014), was shown to match human data in

a repeated prisoner’s dilemma experiment. This software agent is applied to the

macro learning problem in this paper, so we are able to use the parameterization

found by Pape and Kurtz and Guilfoos and Pape, and from other sources in

Psychology.6

Let us consider CBDT formally. There are three primitives. The first primitive

is a set P , with typical element p, which is the set of ‘problems’ or circumstances

that the decision-maker might face. A problem can be thought of as a vector of

exogenous variables that the agent is able to observe before her choice. In the

umbrella example, the problem vector might include the prediction of the local

weather report that the agent listens to before leaving for work. The second

primitive is a set A, with typical element a, which is the set of actions available to

the decision-maker. Third, there is a set R, with typical element r, which is the

set of possible results or outcomes. The action and result sets correspond to the

set of actions and outcomes in EUT. A triplet (p, a, r) is called a case, and it can

be thought of as a complete learning experience. Decision-makers accumulate a

set of such cases, called a memory, which the decision-maker uses to forecast the

outcome of choices.

A decision-maker makes choices of actions a in response to new circumstances

p, given her memoryM. When these choices satisfy certain axioms, then one can

write down a mathematical representation of that choice, called Case-based Utility

CBU : A → R. That mathematical representation has three components. The

5In particular, the ‘SHJ’ series of classification learning experiments, starting with Shepard
et al. (1961).

6There is other empirical evidence in support of Case-based Decision Theory matching human
behavior. Gayer et al. (2007) investigate whether case-based reasoning appears to explain human
decision-making using housing sales and rental data. They hypothesize and find that that sales
data are better explained by rules-based measures because sales are an investment for eventual
resale and rules are easier to communicate, while rental data are better explained by case-based
measures because rentals are a pure consumption good where communication of measures are ir-
relevant. Ossadnik et al. (2012) run a repeated choice experiment involving unknown proportions
of colored and numbered balls in urns. They find that CBDT explains these data well compared
to alternatives such as minimax (Luce and Raiffa, 1957) and reinforcement learning (Roth and
Erev, 1995). Golosnoy and Okhrin (2008) use CBDT to construct investment portfolios from
real returns data and compare the success of these portfolios to investment portfolios constructed
from EUT-based methods, and find some evidence that using CBDT aids portfolio success.
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first component is utility u : R → R, which has the usual definition. Second, the

agent has an aspiration level H ∈ R, which represents a target level of utility of the

agent (see below). The third component is a similarity function s : P×P → [0, 1].

The similarity function describes, quite simply, how similar two circumstances are

in the mind of the decision-maker, and it captures the spirit of similarity described

by Hume. The mathematical representation is:

CBU(a) =
∑

(q,a,r)∈M(a)

s(p, q) [u(r)−H] (1)

Where M(a) is defined as the subset of the agents’ memory M in which action

a was taken. This CBU measure represents the agent’s preference in the sense

that, for a fixed memoryM and problem p, a is chosen over a′ only if CBU(a) ≥
CBU(a′).

In macroeconomic models of markets, behavior convergence is an important

property: When does the price converge to the rational expectations equilibrium

level, or some other level, or not at all? Price convergence requires convergence

in firm behavior; and in CBDT, convergence is governed by the aspiration value.

The aspiration value H, as described above, represents the agent’s target level

of utility. Functionally, the agent uses the aspiration value as a default value

for forecasting utility of new alternatives. As can be seen in the formulation of

CBU(a) in Equation 1, there is a switch in sign when agents find a utility level

u(r) which exceeds their aspiration level H. Suppose that agents chose an action a

which resulted in result r, where u(r) < H. Since the term [u(r)−H] is negative,

this would discourage future attempts at action a, all else equal. On the other

hand, if action a′ lead to result r′, yielding utility u(r′) > H, then future attempts

at action a′ would be encouraged. So the level of H determines a switch (on the

margin) between experimentation with new actions and exploitation of current

best actions. This is similar to the reservation value, and stopping when that

value is reached, that arises from the ‘optimal searching’ literature starting with

(Weitzman, 1979). (The search literature is of course premised on expected utility

instead of case-based utility.)

Given its role in determining convergence, a key part of this model is the level

and dynamics of the aspiration level. We adopt a simple updating rule for the as-
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piration level, by adapting a computational optimization method called ‘simulated

annealing’ (Kirkpatrick et al., 1983). The name and inspiration for simulated an-

nealing comes from metallurgy: annealing is process involving heating and cooling

metals to decrease defects. Proper annealing in metallurgy requires a correct cool-

ing speed. ‘Slow cooling’ is implemented in the Simulated Annealing algorithm

as a slow decrease in the probability of accepting worse solutions: initially, when

the ‘temperature’ is hot, the algorithm searches for new solutions and rarely stays

at any one solution. Later, as the ‘temperature’ cools, the algorithm settles on

the best available solution. Analogously, the method we introduce in this paper is

to start agents with an ambitious (i.e. high) aspiration level, and let it fall on a

steady schedule. Let Ht be the aspirational value at time t, with exogenous initial

level H0 and annealing rate δ ∈ (0, 1].7 Then we define Ht as:

Ht = δHt−1

i.e. Ht = δtH0

In both macroeconomic and microeconomic dynamic models, it is common to

use a utility discount rate β ∈ (0, 1) to discount future utility or profits into present

values. Generically, if ~x is a vector of consumption values over time,

U(~x) =
T∑
t=0

βtu(xt) (2)

It is common to consider this β as as parameter of utility. It can typically be

thought of as ‘patience;’ a β close to one corresponds to an agent who values the

future highly, while a β close to zero can be thought of as an agent who puts little

value on the future. The annealing rate δ can be thought of as analogous to β.

Like β, δ represents ‘patience.’ A δ close to one means that agents keep striving

toward a high level of utility, despite never or rarely finding it. This implies that

the agent is patient in seeking its goal. On the other hand, a δ close to zero means

that agents will quickly compromise their aspirations and settle on a (relatively)

low payoff set of actions. Taking the analogy further, formally one can think of β

7δ = 1 implies no annealing.
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as the discount rate that an agent applies to her expectations of the future; here δ

is the discount rate the agent applies to her aspirations of the future.

Gilboa and Schmeidler (1996) advocate for an aspiration level with two prop-

erties: the aspiration level should be realistic, and ambitious. By “realistic,” they

mean that the aspiration value should be set to be an average of its previous value

and the best average performance so far encountered. “Ambitious” means one of

two things. What they call static ambitiousness calls for an initial aspiration level

that is ‘sufficiently’ high. So-called dynamic ambitiousness calls for an aspiration

level if the aspiration level is (stochastically) set to exceed the maximal average

performance by some constant infinitely often. It could be said that the simulated

annealing process we follow here is ‘statically ambitious’ and somewhat ‘realistic,’

in that it begins ‘too’ high and falls toward the average, at least over long stretches

of the agent’s life.

The functional form of similarity is from the psychology literature; in particu-

lar Shepard (1987), in the journal Science, who finds that “[e]mpirical results and

theoretical derivations point toward two pervasive regularities of generalization.”

He finds that similarity “approximates an exponential decay function of distance

in psychological space.” In this case, Shepard’s result has remarkably specific im-

plications about the functional form of similarity: similarity ought to be measured

by the inverse exponential of vector distance. Applying this result, we use the sim-

ilarity function s(p, q) = 1
ed(p,q)

where p, q ∈ P and d(p, q) is Euclidean distance.8

This form was used in CBSA in Pape and Kurtz (2013) and was tested against

some alternatives, where it was found support.

Pape and Kurtz (2013) also find that accumulative, instead of average, similar-

ity provides a better fit for human data. Accumulative similarity is the functional

form provided here; average similarity declares that the similarity between two

circumstances be normalized by the total similarity so far accumulated in mem-

ory. Pape and Kurtz find that, in a simulation setting, average similarity puts

undue weight on the possibility that only one action is best regardless of circum-

stance, as evidenced by a non-trivial fraction of agents, when endowed with perfect

memory, exclusively choosing one action even as the circumstance changed. This

behavior seems uninteresting in our case, where we want agents to not abandon

8Billot et al. (2008) provide an axiomatic foundation to this functional form.
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the possibility that the choice of quantity matters to ones payoff.

Along with the primitives and dynamics described above, CBSA defines the

decision environment: i.e. those parts of the choice problem that are external to

the agent. These need not be defined for a decision theory, so are not a formal

part of CBDT. They need only be formally defined when one seeks to generate

simulated choice behavior to compare to empirical data, as we do here.

In CBSA the decision environment is represented by function (algorithm) called

the problem-result map or PRM. The PRM is the transition function of the en-

vironment. It takes as input the current problem p ∈ P the agent is facing, the

action a ∈ A that the agent has chosen, and some vector θ ∈ Θ of environmental

characteristics. The PRM returns the outcome of these three inputs: namely,

it returns a result r ∈ R; the next problem p′ ∈ P that the agent faces; and a

potentially modified vector of environmental characteristics θ′ ∈ Θ. I.e.:

PRM : P ×A×Θ→ R×P ×Θ

For example, consider the firm choosing quantity in a setting with a state variable

which affects costs of production. The problem is the current level of the state

variable, and the similarity function could describe how similar different levels of

the state variable are. Now consider a series of such problems. The PRM can be

thought of as a device which delivers state variable levels to the agent. It provides

a state variable level (which embeds the result of each action) and maintains a

θ which describes, for example, the distribution of future state variables. (The

PRM which corresponds to the macro learning problem is described in greater

detail in Section 3.3. )

In the remained of this section, we briefly present the formal statement of

the algorithms (functions) which govern CBSA, including how exactly the time-

dependent aspiration value Ht enters the agent’s choice.

Figure 1 describes the choice algorithm which implements the core of CBSA.

It is an algorithmic description of the choice process defined by CBDT, with two

modifications. The modifications allow for imperfect memory. In Pape and Kurtz

(2013), it was found that a match between CBSA and human data was only

achieved by allowing for imperfect memory: otherwise CBSA solves the classifica-
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Input: problem p, memory M.

1. For each a ∈ A:

(a) For each (q, a, r) ∈ M, draw r.v. b(q,a,r) ={
1, with probability precall

0 otherwise.

Construct Ma =
{

(q, a, r)
∣∣b(q,a,r) = 1, AND

∃q ∈ P , r ∈ R such that (q, a, r) ∈M}

(b) Let Ua =

{∑
(q,a,r)∈Ma

s(p, q)
[
u(r)−Ht

]
, if Ma 6= ∅

0, otherwise

2. Construct set BEST =
{
a ∈ A

∣∣Ua = maxb∈A {Ub}
}

3. If #(BEST ) = 1 then let a? be the sole entry in BEST. Else
choose one element uniformly from the set BEST and assign
that to a?.

Output: Selected action a?

Figure 1: The Choice Algorithm
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tion learning problem much faster than humans. There are two kinds of imperfect

memory. First, there is imperfect recall, governed by a probability precall ∈ [0, 1].

Imperfect recall corresponds to an inability to access all memory at any given

time, and it is therefore associated with limited cognitive capacity. Second, there

is imperfect storage, governed by a probability pstore ∈ [0, 1]. Imperfect storage

corresponds to a failure to add some experiences to memory after they are expe-

rienced, and it is therefore associated with limited memory storage capacity.

In Figure 1, the agent faces a problem p ∈ P and has a memory M⊆ C. In

Step 1a, for each action a, she collects those cases in which she performed this

act. Since her recall is imperfect, relevant cases are selected into the set Ma with

probability precall, where relevant cases which are not recalled are simply ignored.9

In Step 1b, she uses this subset of her memory Ma to construct a utility forecast

of that act, called here Ua. The agent then chooses the action which corresponds

to the maximum U. There is an additional step, left unspecified in the original

CBDT: In the case of a tie, the agent randomizes uniformly over the acts which

achieve this maximum.

Input: problem p, memory M, characteristics θ.

1. Input p,M into choice algorithm (Figure 1). Receive output a?.

2. Let (r, p′, θ′) = PRM(p, a?, θ).

3. With probability pstore,

Let M’ =M∪ {(p, a?, r)}
Else let M’ =M

Output: problem p′, memory M′, characteristics θ′.

Figure 2: A Single Choice Problem.

Figure 2 describes a single choice problem faced by the agent. It imbeds a

reference to the choice algorithm described in Figure 1. Figure 2 embeds the

agent in an environment and explicitly references that environment, in the call

to PRM. In Step One, the agent selects an act, a?. In Step Two, the action is

9When precall = 1, the agent has perfect recall. It then corresponds to CBDT as it appears
in Gilboa and Schmeidler (1995).
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performed, in the sense that the environment of the agent reacts to the agent’s

choice: the PRM takes the current problem p, the action a? selected by the agent,

and the characteristics unobserved by the agent θ, and constructs a result r, a next

problem p′, and a next set of characteristics θ′. In Step Three, the agent’s memory

is augmented by the new case which was just encountered, so long as the agent

does not have a ‘write-to-memory error:’ i.e., with probability pstore, the case that

was just experienced is added to the set M. With probability (1− pstore), that

case is discarded.

Since the choice problem depicted in Figure 2 maps a problem, characteristic,

memory vector to another vector in the same space, it can be applied iteratively.

A series of such iterations, along with initial conditions and ending conditions, can

then be used to produce a single time series of agent behavior, called a ‘run.’ Here,

the initial conditions specify that agents have an empty memory, although it is

simple to modify the algorithm such that the agent starts with some non-empty

memory. The ending conditions can take on a variety of forms, and can be exoge-

nous or endogenous. Often times the ending condition is simply a predetermined

number of periods, as is the case in this paper.

3 The Cobweb Model

3.1 The environment

This is a competitive economy that produces a single good. While demand re-

sponds to the price instantaneously, supply cannot. Production lags force produc-

ers to forecast future prices, and make decisions based on the forecasts. There are

n firms. The cost function ci of firm i at time t is

cit = aqit +
1

2
bq2it − cwt−1qit, (3)

where a, b, c > 0, qit is the quantity it produces at time t, and wt−1 is a state

variable that affects the profit at time t. If we think of the good as an agricultural

product such as wheat, then w can be thought of as a value that represents weather

conditions. We assume Ew = 0 and Eww′ = Ω.
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Firms maximize their expected profit:

πeit = peitqit − aqit −
1

2
bq2it + cwt−1qit, (4)

At time t − 1, firm i chooses quantities qit to maximize its profit. From the

first order condition of this maximization problem, we can derive the individual

supply curve

qit = −a
b

+
1

b
peit +

c

b
wt−1. (5)

We assume that the demand schedule is:

pt = θ − β
n∑
i=1

qit, (6)

where θ, β > 0.

Equating market demand and supply:

n∑
i=1

qit = n(−a
b

+
c

b
wt−1) +

1

b

n∑
i=1

peit =
θ − pt
β

, (7)

we obtain the behavioral equation that describes the evolution of prices:

pt = µ+ α∗
n∑
i=1

peit + δwt−1, (8)

where µ = anβ
b

+ θ, α∗ = −β
b
, and δ = − cnβ

b
.

3.2 Rational expectations solution

Rational expectations require that agents’ subjective expectations match the ob-

jective distributions of the actual economic system. The amounts to

peit = Et−1pt, (9)

where Et−1 represents the conditional expectations based on information available

at time t−1. Note that since agents are assumed to possess the same information,
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their expectations are homogeneous.

Hence, (8) becomes

pt = µ+ αEt−1pt + δwt−1, (10)

where α = −βn
b

.

Taking conditional expectations on both sides of (10), we get

Et−1pt = µ+ αEt−1pt + δwt−1. (11)

We can then solve for Et−1pt as

Et−1pt =
µ

1− α
+

δ

1− α
wt−1. (12)

It is also clear from (10) and (11) that pt = Et−1pt. Therefore the rational

expectations solution for pt is

pt =
µ

1− α
+

δ

1− α
wt−1. (13)

A closely related solution is that of adaptive learning agents. Suppose agents

behave like econometricians who use observed data to estimate the law of motion

of the economy. Let’s assume that learning agents understand that wt−1 has an

impact on prices. Their perceived law of motion of the economy is

pt = a+ bwt−1. (14)

They run regressions of pt against wt−1 to estimate the parameters a and b. Will

agents learn the rational expectations solution? Evans and Honkapohja (2001)

show that as long as the demand curve satisfies a slope condition, prices will

eventually converge to the rational expectations equilibrium prices. Specifically,

learnability requires that

α < 1. (15)

This result is often used to justify the rational expectations solution.
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3.3 Case-based Learning

In order to use CBSA to produce choice behavior for the firm in this economy, we

must define each component of CBDT/CBSA to correspond to the firm’s choice

problem. As described in Section 2, the three primitives are the set of problems

or circumstances faced by the agent, the set of results or outcomes, and the set of

actions which the agent selects in response to the problem.

The set of actions is easiest to define. Each period, a given firm i must choose

a quantity qit. Therefore, we let the set of actions Q be the finite set of allowable

quantities. The definition of Q—its minimum and maximum allowable values, the

coarseness of its coverage—must be specified for any given simulation run and can

be thought of as a parameter of the setting. In this paper, we choose a Q which

includes the REE quantity, and ranges from a quantity of zero to twice the REE

quantity. We discretize this interval into 61 steps.

The set of results is the next easiest to define. Given the level of the state

variable last period, wt−1, and the current price pt, the result of action qit is

simply the profit level. Let the set of results Π be the set of possible profit levels.

Finally, we define the set of problems or circumstances. The circumstance that

surrounds the choice can be thought of as a vector of all information the firm is able

to observe at time t about the current state of the world before his choice is made.

Here, we primarily investigate the scenario where the circumstance is defined to be

last period’s weather: (wt−1). However, we also investigate alternative scenarios,

such as weather including a few lags, i.e. (wt−1, wt−2, wt−3). Let W be defined as

the set of possible circumstances, with typical element ~w.

As defined above, a case is a triplet consisting of a circumstance, the action

taken in response to that circumstance, and the result of that action. So let C be

the set of all possible cases:

C = W ×Q× Π

with typical element (~wt−1, qit, πit).

The memory of a firm is the set of all cases that they have experienced; at

time 1, that memory is empty, and in each subsequent period, exactly one case is

added to memory. For example, suppose firm i is called upon to choose quantity
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qt, and suppose the circumstance is defined to be the previous two periods of the

state variable. Then her memory when making her time t decision consists of:

Mit =
{(

(w0, w−1) , qi1, πi1
)
,(

(w1, w0) , qi2, πi2
)
,

. . .(
(wt−2, wt−3) , qit−1, πit−1

)}
Note that, because of the overlapping lag structure, each observation of the state

variable appears twice, just as it would in a time-series regression with overlapping

lags. From this point of view, the cases in memory can be thought of as observa-

tions in a time-series data set, where the circumstance and action are assumed to

cause the result.

Given this structure, and following the definitions in Section 2, we can define

the case-based utility for the firm in this setting. Suppose that the agent has a

memoryM and a faces a problem/circumstance ~wt, and must choose qt ∈ Q. The

agent constructs a measure of the desirability of each q ∈ Q called case-based

utility. The case-based utility of some q ∈ Q is:

CBU(q) =
∑

(~v,q,π)∈M(q)

s(~wt, ~v) [u(π)−Ht]

where M(q) = {(~v, q, π)|(~v, q, π) ∈M}

and Ht = δtH0 (16)

The similarity function, as described in Section 2, is assumed to be inverse Eu-

clidean distance: s(~w,~v) = e−d(~w,~v). The utility function is assumed, for simplicity,

to be risk-neutral profit: u(π) = π.
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4 Results

4.1 Set-up

The macroeconomic parameters of this model are adapted from Arifovic (1994).

Arifovic (1994) evaluates the convergence properties of the genetic algorithm, in a

simple cobweb model without a state variable. We choose a similar setting as the

second parameter set described in that paper. On the cost side, we assume a = 2,

b = 1, and c = 2, so that the cost function of all firms, given a value of the state

variable wt−1, is:

c(q) = 2q +
1

2
q2 − 2wt−1q (17)

The values of a and b are from that paper; c is chosen to be equal in magnitude

to a.

On the demand side, we assume θ = 10, and we let β = .03 in the base case.

These values follow Arifovic (1994).

pt = 10− .03
n∑
i=1

qit, (18)

Primary object of inquiry is the effect of the annealing rate δ on convergence,

so we test values of δ ranging from close to zero, to 1. The base case is δ = .99.

The secondary of inquiry is the implication of the slope of demand. As men-

tioned above (Section 3.2), the slope of demand has implications for the learn-

ability of the rational expectations solution. In the simple cobweb model, β > 0

is learnable, and β < 0, or upward-sloping demand, is not learnable. However,

under econometric learning, α = −nβ
b
< 1 is learnable, while α > 1 is not. As

a consequence, we test three levels of β: β = 0.03, which is the base case and

corresponds to normal, downward-sloping demand; β = −0.03, which corresponds

to upward-sloping demand, but not demand that is so strongly upward sloping

as to undermine econometric learnability; and β = −1.2, which is upward-sloping

demand that disrupts econometric learning.

We evaluate two distributions of the state variable wt. The first is a ‘simple’

formulation. In the simple formulation, we assume that w can take on three

possible values; −1, 0, and 1. The purpose of this formulation is investigate a form
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of the state variable that readily provides a way to evaluate whether some levels

of the state variable are easier to learn than others. It also provides a way to

measure convergence, even if that convergence is away from the REE price: we

can look at the prices that emerge for each discrete level of the state variable and

evaluate price variance for each level: a lowering variance by state variable level

would indicate some kind of convergence. The second is the ‘normal’ formulation,

where it assumed that:

wt = .9wt−1 + εt (19)

where εt is assumed Normal with a mean of zero and a variance of one. The

purpose of this formulation is to investigate a form of the state variable that is

more realistic and more typical of other macro models.

4.2 Presentation and Interpretation of Results

4.2.1 Benchmark result

Our primary interest is to understand the behavior of equilibrium prices under

case-based learning. We focus on two questions: does agent learning eventually

cause the market price to converge? If it does, does it converge to the rational

expectations equilibrium price or some other values?

We start by examining the simulation results from our simplest setup, in which

there are no exogenous shocks to the system and therefore no intrinsic uncertainty.

The only source of price fluctuations is agents’ learning behavior. The simulation

is run for 2000 periods, and is repeated 50 times. We find that with our benchmark

calibration, the answers to the two questions are both positive. In all 50 simu-

lations, the agents gradually learn to choose one optimal quantity of production,

which results in one unique market price. Moreover, this price invariably coincides

with the rational expectations solution.10 In Figure 3, we plot the market prices

from a typical simulation. In the early stages of learning, prices vary quite signif-

icantly. But after about 150 periods, agents learn to choose an optimal quantity,

10In some of our simulations, prices converge to the REE with a small error. Their values are
away from the REE values by a very small margin.
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and the price converges to the REE price.
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Figure 3: Convergence to the REE. Annealing rate δ = 0.99.

Recall that in the case-based decision theory, an important element of agent

behavior is the aspiration level. A high aspiration level requires that agents be

satisfied with their choices only when the payoffs are relatively high, while a low

aspiration level relaxes such constraints. In our model setup, we let agents start

with a high aspiration level (a profit level that is high and unattainable), but allow

the aspiration level to gradually decrease. The parameter that controls the rate

of aspiration reduction is the annealing rate. Our benchmark calibration for the

annealing rate is 0.99, which is analogous to a discount rate of 0.99 in a utility-

maximizing framework. Thus, our agents will experiment with different choices

in the early stages of the simulation, because they are not easily satisfied with

their profits. Over time, they will learn from experience what levels of profits

are feasible. As the aspiration level gradually decreases, agents will eventually

settle with a choice that is both feasible and meets their aspiration. This is the

underlining mechanism that leads to convergence. The fact that the equilibrium

price coincides with the REE price is quite remarkable, because agents’ learning

behavior is completely heuristic and experience-based – there is no mechanical
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resemblance between case-based learning and the rational expectations framework.

It is the structure of the economy that leads up to the convergence to the REE.

A natural inference we can draw from the above analysis is that there cannot

be convergence to the REE at all levels of the annealing rate. When the annealing

rate is 1, for example, agents will not be content with their search unless their

profit reaches the predefined unattainable target. Consequently, their experiments

with different choices will never end, and there will never be convergence. Our

simulations confirm this point. What about annealing rates between 0.99 and 1?

Our experiments show that as long as the annealing rate is not exactly 1, there will

be convergence to the REE price. This is logical because as long as the aspiration

level is decreasing over time, it will eventually reach a feasible level, and agents

will select an optimal choice from experience and stick to it. What is different is

the speed of convergence. It takes longer for the price to converge the higher the

annealing rate.

What is not so obvious is what happens when the annealing rate is between 0

and 0.99. We experiment with several lower levels of the annealing rate in our sim-

ulations: 0.9, 0.8, 0.7, 0.2, and 0.01. We find that as the annealing rate goes down,

different equilibrium outcomes start to occur: the market price still converges to a

single value, but it is not necessarily equal to the REE value. Moreover, this value

varies in each run of the experiment. The equilibrium price is path-dependent, in

the sense that its value is affected by what choices agents experiment with in the

early stages of learning. We plot the prices from a typical experiment in Figure 4.

The annealing rate is 0.8. As we can see from the lower panel, the price converges

to a certain value after just a few trials, and that it is far away from the REE

price level. The top panel depicts a situation in which the agents’ choices happen

to be consistent with the REE price. In this case, convergence to REE happens

“by luck.” It occurs when agents happen to experiment with the REE price in the

first few trials of their learning process.

Thus, when the annealing rate is low, multiple equilibria abound and the REE

becomes a special case. This result can be understood as follows. With a low

annealing rate, agents’ aspiration level drops quickly, and it gets increasing easy

for them to be satisfied with given profit level. If the REE price has been considered

before they are satisfied with a given profit level, they will choose to stick to the
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Figure 4: Lower annealing rate δ = 0.8. Converges quickly, sometimes to REE
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REE price. But if they have never tried the REE price when their aspiration level

is sufficiently reduced, they will select the price that delivers the highest profit,

and stick to it. This is also why the equilibrium price is path-dependent: the price

that agents eventually choose depends on what prices they have experimented with

in those periods before their aspiration is satisfied.

Our agents are subject to two different aspects of “bounded rationality.” The

first is that they do not have any structural knowledge of the economy, and learn

about their optimal choices heuristically by comparing cases in their memories.

This is universal to all our learning agents. The second aspect is unique to the

low-aspiration agents. There are more price and profit information to be explored,

but they choose to be satisfied with their given level of profit, and stop searching

for a better outcome. This second aspect is responsible for the existence of multiple

equilibrium prices in the Cobweb model. In the macroeconomics literature, such

behavior has been associated with “restricted perception” or cognitive limitations.

Hommes and Zhu (2012), for example, argue that even if agents observe all the

useful information relevant to the economic system, they simply may not possess

the knowledge that associates their observations with what they are trying to

forecast. An example they give is asset price forecasting. Even if consumers

observe the fundamental shocks to the economy, they may not understand that

stock prices are a function of them. Therefore, they forecast stock prices using

only simple behavioral rules. Adam (2007)’s experimental work is consistent with

this argument: in his experiments, the forecasting rule that best describes the

subjects’ forecasting behavior is a simple AR(1), despite the fact that the subjects

were given much richer information that could potentially improve the forecasts.

Another possible reason for agents to forgo useful information is that information

is costly to obtain and process. This point is made forcefully by Mankiw and Reis

(2002), and has led to a series of research into the importance of sticky information.

4.2.2 Robustness

We add uncertainty to the economy. First we consider the case where the state

variable w takes three values: −1, 0, and 1. All simulations are run under the

benchmark calibration. When there are multiple states of the world, the REE
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Figure 5: Approximate Convergence of Price to REE price: annealing rate 0.99

0 10 20 30 40 50

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

Periods

P
ric

e 
D

iff

Price minus REE Price, Annealing Rate: 0.2

Price−REE Price

1900 1910 1920 1930 1940 1950

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

Periods

P
ric

e 
D

iff

Price minus REE Price, Annealing Rate: 0.2

Price−REE Price

Figure 6: No Convergence of Price to REE price: annealing rate 0.2
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price is no longer a single value. It is a function of the state variables. There is

one REE price for each state.11 We need a strategy to understand whether or not

learning has resulted in the convergence to an equilibrium. A direct approach is

to check how many different prices are charged at the beginning of the simulation,

and how many are charged after learning takes place for a while. Specifically, we

check the number of prices in the first vs. last 100 periods for different runs of the

simulation. We find that in all 50 simulations, agents experimented with all of the

61 different prices in the first 100 periods, but in the last 100 periods, agents settle

down with only 3 prices in 35 of our 50 simulations, and 2 prices in the remaining

15 simulations. Clearly, they have learned to choose only 2 or 3 optimal quantities

via learning.

An alternative way to look at this issue is to examine price volatilities state

by state. Suppose over time, agents learn that a certain quantity of production

is optimal in a given state, then they will choose the same quantity whenever the

economy is in that state. This decision will be reflected in market prices: after

convergence occurs, we should observe zero or very low volatility for prices given

each state.

Our results are presented in Table 1. We compare the standard deviation of

prices in the first 100 periods of the simulation and the last 100 periods, for each

state. All numbers in the table are averages from the 50 runs of the simulation.

The table shows that when w = −1, the volatility of prices is 0.1659 in the first

100 periods, and is 0 in the last 100 periods. The same pattern holds for w = 0

and w = 1. In these two cases the volatility does not decrease to exactly 0 in the

last 100 periods, but are extremely small in values (0.04 and 0.018). Essentially,

the economy has converged to a dynamic equilibrium in which the equilibrium

prices are functions of the state variables. How close is the equilibrium to the

REE? In the last column of Table 1, we compute the standard deviations of the

gap between actual prices and the REE prices, and compare them across the two

sub-periods. The standard deviation decreases from 0.17 in the first 100 periods

to about 0.05 in the last 100 periods. This indicates that equilibrium prices are

getting increasingly closer to the REE prices.

11In models with multiple equilibria, there may be more than one equilibrium price in each
state. The Cobweb model does not have multiple REEs.
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Annealing Period Std. Deviation
Rate δ Range from REE w = −1 w = 0 w = 1

1 1–100 0.1812 0.1666 0.1675 0.1655
1901–2000 0.1726 0.1661 0.1636 0.1601

0.999 1–100 0.181 0.1631 0.1699 0.1646
1901–2000 0.054 0.0585 0.0015 0

0.996 1–100 0.1806 0.1652 0.1664 0.1661
1901–2000 0.0444 0 0.0023 0.0032

0.993 1–100 0.1798 0.1636 0.1697 0.1587
1901–2000 0.0482 0 0.0411 0.0159

0.99 1–100 0.1728 0.1659 0.1668 0.1388
1901–2000 0.0521 0 0.0427 0.0188

0.9 1–100 0.0971 0.1042 0.0882 0.1077
1901–2000 0.0685 0.034 0.0508 0.1024

0.7 1–100 0.1047 0.0775 0.0889 0.1534
1901–2000 0.0954 0.0484 0.0774 0.1525

0.2 1–100 0.1032 0.0819 0.1114 0.1035
1901–2000 0.0997 0.0618 0.1073 0.1053

0.01 1–100 0.113 0.0913 0.1317 0.1284
1901–2000 0.1075 0.0674 0.127 0.1305

1 firm, β = .3.

Table 1: Effect of Annealing Rate on Convergence
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Figure 5 presents a time series plot of the deviation of equilibrium prices from

the REE prices in a typical simulation with an annealing discount rate of .99. In the

first 50 periods (left plot), the differences between the equilibrium prices and the

REE prices are much larger than those in the last 50 periods (right plot). Contrast

this with Figure 6, in which the annealing rate is .2; there is little reduction in the

variance of difference between the price and the REE price over time.

These results are similar to those from our benchmark simulations: agents are

able to learn to optimize their choices in each state of the economy; moreover,

their choices resulted in the asymptotic convergence of the equilibrium prices to

the REE prices.

We next do the same experiment with lower annealing rates. We find that

there is clear evidence of price convergence for all levels of the annealing rate. For

example, when the annealing rate is 0.7, there are typically 4-9 different market

prices in the first 100 periods of the simulation. In the last 100 periods, this number

is reduced to 1-3, with 2 and 3 prices being the most frequently occurred outcome.

Are these prices close to the REE prices? In Table 1, we can see that for annealing

rates 0.7, 0.2, and 0.01, the standard deviations of the price-REE gap are virtually

the same for the first and last 100 periods of the simulation. It indicates that the

market prices generally do not converge to the REE prices. This is also reflected

in the state-by-state volatility of prices. The table shows that for each value of

the state, there is virtually no reduction in the standard deviation of the market

prices. We know that the number of market prices have been reduced via learning.

But because there are multiple equilibria, and these equilibrium prices are quite

far away from each other, the standard deviations for some of our 50 simulations

are large. When averaged over all 50 simulations, the standard deviation remains

high.

Finally, we consider the case where the state variable follows an AR(1) process:

wt = .9wt−1 + εt. (20)

This is an assumption often used in macroeconomics for this and similar type of

models. It creates richer dynamics for the state variable, and is likely to generate

more sophisticated price movements. We run the same simulations with this new
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setup, and re-examine all our results. We find that our conclusions still hold. Con-

vergence to the REE takes place with high annealing rates, and multiple equilibria

occur with lower annealing rates. In Figure 7, we plot the market prices vs. the

REE prices for the low annealing rate case (upper panel) and the high annealing

rate case (lower panel). In the lower panel, market prices trace the REE prices

fairly well, while in the upper panel, market prices have little correlation with REE

prices.

4.2.3 A no convergence result

An interesting result from the bounded rationality literature is that convergence to

the REE price is affected by the values of some structural parameters. For example,

Evans and Honkapohja (2001) show that with econometric learning, there is no

convergence to REE prices if α < 1. Our following experiment is inspired by their

result.

We let the slope of the demand curve change from a regular negative value to

an increasingly larger positive value, and examine the behavior of prices. Since

α = β
b
, and b = 1, α turns positive when the slope of the demand curve is higher

than 1. Our results are presented in Table 2.

With all three levels of the slope of demand, prices do eventually converge. This

is evident from the sharp reduction in the state-by-state volatilities. These prices,

however, are very far from the REE prices. This is clear from the high standard

deviations of the price-REE gaps in the last 100 periods of the experiment.

Therefore, case-based learning makes the same prediction as econometric learn-

ing in terms of the stability of REEs in the Cobweb model: the REE price is not

learnable if the slope of the demand curve is higher than 1.

4.2.4 The number of firms

The above analysis is conducted under the assumption that there is a representative

firm. Next, we relax this assumption and allow multiple firms (agents) to learn

and make decisions independently. We experiment with n = 1, 2, 20, and 50. All

other parameters are calibrated the same way as described above.

Table 3 shows the result. With more firms in the market, our main conclusion
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Coeff. on Period Std. Deviation
Demand β Range from REE w = −1 w = 0 w = 1

0.3 1–100 0.1737 0.1679 0.1645 0.1435
1901–2000 0.0522 0 0.0435 0.0236

-0.3 1–100 0.1818 0.1738 0.1739 0.1509
1901–2000 0.0666 0.0048 0.0523 0.0249

-1.2 1–100 114.9014 42.0486 41.8736 40.8387
1901–2000 138.1442 1.2745 1.7441 2.1582

1 firm, δ = .99.

Table 2: Effect of Demand Slope on Convergence

Number of Period Std. Deviation
Firms Range from REE w = −1 w = 0 w = 1

1 1–100 0.1738 0.1681 0.1651 0.1433
1901–2000 0.0522 0 0.0466 0.0192

2 1–100 0.2673 0.236 0.2414 0.2079
1901–2000 0.1033 0.0093 0.0515 0.0503

20 1–100 1.5581 0.8375 0.8141 1.342
1901–2000 0.5713 0.0398 0.1139 0.1552

50 1–100 3.1713 1.8934 1.6228 2.3911
1901–2000 0.737 0.0331 0.1508 0.3508

β = .3 , δ = .99.

Table 3: Effect of Number of Firms on Convergence

continues to hold. Prices converge asymptotically to REE prices over time. The

only difference is that the volatility of the price-REE gaps seems to increase as the

number of firms increases. This indicates that more decision-makers add to the

variety of prices charged and prolonged the convergence process.

5 Conclusion

In this paper, we propose modeling bounded rationality in macroeconomics using

Case-based Decision Theory (Gilboa and Schmeidler, 1995). Case-based Decision

Theory was developed to be be a more realistic decision theory than expected

utility by dispensing with the requirement that agents know with the entire state
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space of the problem. CBDT has received some recent empirical support as a

model which can explain individual choice behavior in psychological and economic

experiments and so can be thought of as providing a model of how an ‘average

person’ might respond to a generic choice situation. Some of the empirical support

comes from work using the Case-Based Software Agent (Pape and Kurtz, 2013;

Guilfoos and Pape, 2014), which we use in this paper to simulate learning by firms.

When a Case-Based Software Agent encounters a new case and a decision needs

to be made, she looks into her memory bank for cases that are similar to the

current case. By comparing the payoffs associated with past cases, she selects a

choice that delivers the best payoff in similar cases. She then accumulates cases in

memory as she makes more choices, and it is this accumulation of memory which

drives learning.

When we apply this case-based learning approach to the Cobweb model, we

find that agent patience is the key parameter which determines the convergence

properties of the economy. ‘Patience’ is captured by a parameter called the an-

nealing rate δ. The annealing rate is analogous to the utility discount rate β.

For an intermediate level of δ, around .99, we find that the economy converges to

an equilibrium which corresponds to the rational expectations equilibrium. When

agents are insufficiently patient (δ is too low) we find that agents converge much

quicker to an equilibrium, but the price level which results may be far from the

REE price. In this case, there are multiple equilibria in the economy, and they

are path or history dependent. On the other hand, we find that when agents are

too patient, that is, when δ is too high (δ = 1), agents continue to search for an

optimal quantity and there is no convergence in prices at all. We also find that the

slope of the demand curve also plays a role in determining the convergence prop-

erties: like econometric learning (Evans and Honkapohja, 2001), we find that the

rational expectations equilibrium is learnable under Case-based Decision Theory

as long as the demand curve has a slope less than one.

Our result suggests that in the Cobweb economy, the case for a unique ratio-

nal expectations equilibrium weakens when agents are heuristic learners. Multi-

ple equilibria abound, and the unique equilibrium is a special case. Due to its

usefulness in modeling macroeconomic models and its microeconomic empirical

foundations, Case-based decision theory is a learning method which should be in-
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corporated into future work in macroeconomics. It has other qualities that we

seek to explore in future work: for example, social learning can be implemented

by case-based agents sharing parts of their memories. This simulation setting also

allows for ‘scaling up’ the economy to a larger, more complicated economy with

heterogenous agents. Consumer or worker agents could also be case-based in a

more complete model of the macroeconomy.
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