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In classification learning experiments, test subjects are presented with objects which they
must categorize. The correct categories, which are known to the experimenter, are functions of the
characteristics (“dimensions”) of the objects, such as size, color, brightness, and saturation. The
experiments measure the relative difficulty of learning different categorizations. One major factor
which influences the difficulty of learning is whether the dimensions are easily distinguishable by
the subjects. Separable dimension problems are ones in which humans can differentiate dimen-
sions of the objects, e.g. size, color, and shape. Integral dimension problems are ones in which
humans can not (easily) distinguish the dimensions, e.g. brightness, saturation, and hue. Psy-
chologists reason that when dimensions are separable, humans develop logical rules about which
dimensions matter, and when they are integral, humans do not (cannot) develop these rules.

Feldman (2000)1 connected separable dimension learning to logical complexity. Logical
complexity is a mathematical metric which ranks problems by how concisely the solution can be
represented as a set of logical rules. Feldman showed that a logical complexity metric can accu-
rately predict the relative difficulty of separable dimension learning problems for human subjects.

We find the other half of Feldman’s story. In integral dimension problems, when humans
cannot differentiate dimensions of objects and cannot form logical rule systems, humans fall back
statistical information. Statistical complexity is a mathematical metric which evaluates the infor-
mational density of a problem statistically. Our conclusion is parallel to Feldman’s: While Feldman
finds that logical complexity predicts learning difficulty in separable dimension problems, we find
that statistical complexity predicts learning difficulty in integral dimension problems.

The Psychology of Classification Learning: Background. ‘Categorization’ is a core area
in the field of cognitive psychology: How do people learn, represent, and use categories to make
sense of the world? The dominant research approach has been to investigate how people learn from
experience to categorize a novel domain; these are the classification learning experiments discussed
above. Researchers seek formal (mathematical or mechanistic) models to account for human per-
formance in supervised classification learning.2 Mathematical models include metrics like the one
proposed in this paper that provide typically closed-form predictions of learning difficulty. Mech-
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anistic models are algorithms that are run as simulations and provide stochastic assessments of
learning difficulty.

Some category structures are more difficult to learn (i.e., show a greater error rate during
training) than others. The difficulty pattern is the foremost empirical phenomenon researchers seek
to explain. A classic demonstration originated with Shepard, Hovland, and Jenkins (1961)3 who
tested human learners on the six possible types of category structures that arise from assigning eight
training items (based on all possibilities given three binary-valued dimensions) into two equal-
sized classes. Learning is easiest when the classes can be distinguished using a simple rule on
a single dimension–e.g. all large items are category A and all small items are category B. This
categorization is called “Type I.” Learning is hardest when the two classes must be memorized,
since they cannot be distinguished according to any set of rules or statistical regularity (Type VI).
The remaining types (II-V) are intermediate in difficulty. In the traditional ordering, Type II (a
logical XOR rule on two dimensions) is learned faster than the rest; however, an updated measure
of the ordering reflects the finding that Type II does not differ from Types III-V except under
particular instructional conditions.4 A complete description of the six mappings is found in Table
1.

Mathematical accounts of the SHJ ordering. Feldman1 offered a mathematical account
showing that the Boolean complexity of category structures predicts the relative ease with which
they are learned. Subsequent research has extended and improved upon the complexity based
account of the SHJ ordering.5–9 These elaborations are consistent with the updated SHJ ordering.4

Based on this success, a natural step is to return to the psychological evidence to evaluate the
complexity approach more fully. The SHJ ordering depends fundamentally on characteristics of
the learner and material being learned. In particular, from SHJ we know that speed of learning of
the six types differs when the task is item identification rather than classification. As predicted by
stimulus generalization theory, learning slows down (for Types I-V ) and while the intermediate
types (II-V ) remain clustered, they separate out into a distinct ordering (IV < III < V < II).
Nosofsky and Palmeri (1996) studied SHJ classification learning with stimuli comprised of integral
dimensions – for which humans generally cannot pick out, attend to, or generate hypotheses about
individual stimulus dimensions. With stimuli varying in terms of brightness, hue, and saturation,
rather than color, shape, and size, the I < IV < III < V < II < V I ordering was again
observed – as if classification were no different than identification learning.10 To complete the
picture, it has been shown that monkeys11 and young children12 also learn the SHJ types (with
separable dimension stimuli) in the order predicted by pure stimulus generalization theory (i.e.
I < IV < III < V < II < V I).

What does this portend for complexity-based accounts? Once committed to a particular in-
stantation of logical complexity, such as Feldman’s use of Boolean complexity, only one ordering
can be predicted. While a logical complexity measure predicts the separable-dimension SHJ or-
dering, we ask: does a statistical complexity measure predict the SHJ ordering that emerges from a
different task (identification), different materials (integral-dimension stimuli), or different learners
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(monkeys and children)? We find that it does.

Measures of Complexity: Background. While a number of different ways have been pro-
posed for measuring complexity,13 there are two largely distinct (but related) approaches to com-
plexity characterization. The first approach is logical complexity. Logical complexity generally
characterizes the length of a (shortest) description of a system, a problem, or a task. This class
includes Feldman’s Boolean complexity that counts the minimal number of logic gates needed
to represent categorical structures, and the Kolmogorov (algorithmic) complexity, i.e., length of
the shortest program code to produce a certain output.14 The second approach is statistical com-
plexity, which generally characterizes the amount of information or uncertainty in a system, a
problem, or a task, based on a probabilistic framework. This class includes the lower bound
of statistical data compression and the well known Shannon information entropy15 which mea-
sures how much information an observer could gain from one observation of a system: the higher
the Shannon entopy, the more unpredictable. More concretely, for a probabilistic system X =
{x1, x2, . . . , xn} whose state xi arises with probability pi, the system’s information entropy is
given by H(X) = −

∑
i pi log2 pi. (The use of base 2 for log assumes that the amount of infor-

mation entropy is measured in bits, i.e. binary digits.) For example, if X consists of two items
that occur with equal probability (like heads and tails of a fair coin), then the system is maximally
unpredictable, then the information entropy is H(X) = − (.5 · (−1) + .5 · (−1)) = 1. If X ′ con-
sists of two items that occur with probabilities .75 and .25 (an unfair coin), then the system has
lower unpredictability, because the one outcome occurs more often than the other; correspondingly,
H(X ′) = − (.25 · (−2) + .75 · (−0.41 . . .)) ≈ .81 < 1.

Our metric, based on Shannon’s Entropy. In this paper, we propose a new complexity
metric for the SHJ classification tasks based on the statistical complexity approach, and show
that this new metric correctly predicts the ordering of empirical difficulty of tasks with integral
dimensions. It is based on the idea of: if one observes some subset of the dimensions of the object,
how much unpredictability is left in the categorization? A Type I classification, in which one
dimension completely determines the category, would have low average unpredictability, because
one dimension resolves all uncertainty (even though the other two resolve no uncertainty), while a
Type VI classification would have high average unpredictability, because one dimension resolves
very little unpredictability.

Formally, let a classification task be formulated as a binary function f(x)→ {A,B}, where
A and B are two categories and x is a multidimensional binary vector with d dimensions, so
x = (x1, x2, . . . , xd). Then, we define the following metric

H(n) =

(
2n
(
d

n

))−1 ∑
{i1,i2,...,in}⊆{1,2,...,d}

∑
{b1,b2,...,bn}∈{0,1}n∑

a∈{A,B}

h(p(f(x) = a|xi1 = b1 ∧ xi2 = b2 ∧ . . . ∧ xin = bn)) (1)
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with h(p) = −p log2 p.

This metric calculates the average Shannon entropy remaining in the categorical decision
f(x) under a condition that the object’s properties for n dimensions are fixed to particular binary
value assignments. To understand the metric, let n be the number of dimensions which are observ-
able, and the vector b = (b1, b2, . . . , bn) is the vector of the observed dimensions. (For example,
suppose we observed the first two dimensions, which had a value of 0 and 1 respectively. Then
n = 2 and (b1, b2) = (0, 1)). We then find the probability that an arbitrary vector x is in some
category a, given that n dimensions are fixed to the values given by b. That is the meaning of the
expression p(f(x) = a|xi1 = b1 ∧ xi2 = b2 ∧ . . . ∧ xin = bn); literally, this expression gives the
probability that the category of x is a, given that the ith

1 element is b1, and so on. The innermost
summation is over category types A and B. The second innermost summation is over possible
vectors b, which is of course determined by the number of observable dimensions n. The outer-
most summation is over possible subsets of dimensions chosen: for example, if n = 2 and d = 3,
then the possible sets of indices are {1, 2}, {2, 3}, and {1, 3}. The first term, then, is a weighting
scheme so that maximal unpredictability sums to one.

Given this definition, H(0) represents the entropy when no dimensions are observed. Natu-
rally, it yields gives the largest value across values of n. H(0) = 1 if two categories are equally
present in the stimulus space. On the other extreme, H(d) always gives the smallest value because
the least unpredictability remains once the object’s properties are fully determined. In the SHJ
series of experiments, observing all dimensions uniquely defines the category, so H(d) = 0. (In
principle, one could consider categorization learning in which the categories have some unresolv-
able uncertainty, in which case H(d) > 0. That is not the case in this series of psychological
experiments, however.)

We then further aggregate this metric over all possible values of n, under the idea that the true
unpredictability would be a metric which captures a number of possible observable dimensions.
This aggregate metric is:

Ĥ =
d∑

n=0

H(n), (2)

We consider Ĥ a measure of the overall statistical complexity of a classification task. In particular,
if we order categories by Ĥ , we are able to uncover the human difficulty ordering under integral
dimensions.

Prediction for the SHJ tasks. Now let us consider the application to the SHJ tasks. Table 1
lists the categories associated with each binary string, for classification type I − V I . Table 2 gives
the outcome of our metric calculated on each categorization. The number of dimensions in the
SHJ problem is dSHJ = 3. Correspondingly, the first four rows give the intermediate metric values
H(0) through H(3), followed by the aggregate metric Ĥ . Note that the ordering of Ĥ correctly
predicts the observed integral ordering, which is our primary result.
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As discussed above, the extreme values H(0) and H(dSHJ = 3) are trivially 0 and 1 respec-
tively.1 These values have little interpretation.

The more interesting values are H(1) and H(2). H(1) finds II = V I and and H(2) finds
IV = III , and V = II; therefore neither individual metric alone fully captures human learning
difficulty. These individual dimension metrics have independent interpretations as well. H(1) is
the metric of uncertainty left after one dimension is observed. Consider Table 1. Observe that,
when the first dimension is 0 and the other dimensions are arbitrary, there is an even mix of O
and R for each Types II and V I . Observe that, this holds for the second dimension and the third
dimension as well. So, from the point of view of H(1), Types II and V I are equally ‘difficult,’
in that learning a single dimension resolves no uncertainty. Furthermore, note that for all other
Types (I , III , IV , and V ), the previous exercise does not work. For example, under Type III , the
first dimension is more informative than the second. A similar exercise with H(2), observing any
two dimensions, will reveal why H(2) considers Types IV and III equally difficult and V and II
equally difficult.

Feldman describes his final conclusion as: “human conceptual difficulty reflects intrinsic
mathematical complexity after all” and “subjective conceptual complexity can be numerically pre-
dicted[.]” Our finding strengthens this fundamental result: we have a new domain of experiments
in which mathematical complexity predicts subjective conceptual complexity. Moreover, our find-
ing deepens the Feldman finding, in that while Feldman only observes a domain in which logical
rules are possible and used, we extend the fundamental idea, of measuring mathematical complex-
ity, into a domain where logical rules are impossible. Narrowly defined, Feldman’s metric fails in
this domain. However, the more fundamental idea that Feldman exposed is indeed true: human
conceptual difficulty appears to reflect intrinsic mathematical complexity. Now we know the form
of that complexity reflects whether humans can create logical rules about the problem they face.

1The first indicates that when no dimension is observed, nothing is known, and the second indicates when all
dimensions are observed, there is no uncertainty left, because categorizations are deterministic functions of the object
dimensions.
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b digits Category, by Mapping Type
1 2 3 I II III IV V V I
0 0 0 O O O O O O
0 0 1 O O O O O R
0 1 0 O R O O O R
0 1 1 O R R R R O
1 0 0 R R R O R R
1 0 1 R R O R R O
1 1 0 R O R R R O
1 1 1 R O R R O R

Table 1: The complete description of the six mappings Type I-VI
of three-digit binary strings to categories.

Category types
I II III IV V VI

H(0) 1 1 1 1 1 1
I = IV = III = V = II = VI

H(1) 0.67 1.00 0.87 0.81 0.94 1.00
I <* IV <* III <* V <* II = VI

H(2) 0.33 0.67 0.50 0.50 0.67 1.00
I <* IV = III < V = II <* VI

H(3) 0 0 0 0 0 0
I = IV = III = V = II = VI

Ĥ
2.00 2.67 2.37 2.31 2.60 3.00

I <* VI <* III <* V <* II <* VI

*=matches integral classification learning

Table 2: Our metric calculated on the SHJ classification learning problems
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